Glioma research: Asking right questions

There is an arms race to find the next molecular target. The potential spin-offs are enormous. Royalty payments. Insurance payouts.

Despite insane profits, big pharma has lost its drive to push forward for drug discovery. The easy way is to buy out the biotechnology companies (startups) or chase the clinical conditions which have healthy fat margins (like hypertension). Rare diseases like brain tumours haven’t seen any incremental investments over the past few years because of poor outcomes. Tumour treating field is the only “breakthrough” in recent times for recurrent tumours.

Therefore, the onus lies on informal networks of universities and individual researchers for pushing this narrative forward. Despite the wasted research dollars, there is a lot of promise for translational research.

My proposal has the following (very broad/generic) outline here.

The problem, at the outset, is the cost of sequencing. But it is a necessary evil. Unless we know what type of a tumour we are dealing with or its genetic signature, we cannot hope for proper characterisation. This information needs to be mated to clinical follow up with standard protocols.

Is there any scope for in-vivo monitoring? If yes, what is going to be its timeline? How frequently are we going to see for the mutations? What is the rate of mutations? What is its timescale? When should we intervene?

Another favourite pet theory is the class distinction for stem cells. Do they exist? If yes, why can’t they be reliably identified? What are their niches and what is the best way to target them?

Each sequencing would reveal a wealth of clinical data (both genomics as well as radio-genomics) and spur on more deep dive into the molecular ontology. Yes, that might fulfil the wet dream for molecular targets as well. However, as a radiation oncologist, I am only keen to know whether I can reduce my tumour volumes, how we can reduce the dose to normal structures (brain) and combine efforts with patient-related outcomes.

Bring it on! Let us do it! (Have some laughs!!)

Research and biotech: Asking right questions

The Ken is a wonderful resource for myriad issues.The staff at The Ken is constantly churning out some of the highest quality journalistic write ups in India. Their focus is mostly on start ups, biotech and increasingly now on security of digital assets. The reason why I recommend it is to broad-base your reading sources and think laterally beyond our narrow confines. Financial crunching may not be everyone’s cup of tea but it has spurred me on to understand more about it’s complexity. In the end, it is a deep dive learning experience to write effectively. In the sea of otherwise hopeless mediocrity that Indian journalism has seeped itself, The Ken (and to some extent, Business Standard) redeem themselves.

Today’s post was motivated by an excellent coverage of biotech sector and this prodded me on to think about what the research goals ought to be. Biotech companies are chasing the end of the rainbow for the pot of gold. The reason why US remains the “gold standard” for these companies is because of a perverse incentive that pharmaceutical companies and hospital corporations have to milk the consumer. That’s where the big money is. And these companies are pushing themselves to crack the market in order to get the first mover advantage.

I will not name a few companies that I have worked with (due to non-disclosure agreements with them and that included not calling them names publicly). There were some great individuals, that I had the good fortune to learn from, as well. This aside, they are mostly floundering pushing their luck. In proverbial terms, trying to see what sticks to the wall.

In one presentation, they presented a “case scenario” which showed how the medical oncologist based his decision on genomic details for lung cancer. In another, they were keen to show for cool-rectal cancer. All laudable but with one significant omission. They did not have any follow up for outcomes! Not only this, none for any clinical trial, suitability for a vast majority or how the specific gene sets were chosen to be marketed.

Its stupidity compounded by idiocy. Over and over again.

Sadly, the translational science hasn’t made specific progress and now we have the buzz words like “precision medicine”. Pray, what is precision medicine?

Hype fuels another set of hype cycles. It is a good thing that all of this looks great on dossiers or fanning our collective egos in fancy conferences but they remain a collective effort for intellectual masturbation. We need hard core data sets and equally hard nosed questions before we thrust all of this in front of hapless patients.

The company mentioned in The Ken write up hasn’t specifically mentioned as to how they will find out the difference in the genetic mutations (from primary index lesion) to the current state. I had earlier explored this concept in an editorial arguing for liquid core biopsies as means to monitor the course of treatment in lung cancers because of the range of molecular mutations.

Rest assured, I have a healthy disdain for pharma company sponsored trials with results that appear too good to be true. When it is translated into actual clinical practise, it doesn’t live up to it’s hype. Remember the Cetuximab “landmark trial”? Or even for that matter, Bevacizumab?

Lets pause. Think.

There ought to be healthy skepticism. A side note to fellow radoncs- there is a lot that can be achieved in Radiation Therapy. We need to explore different fractionation schedules or even radiation sensitisers. Combination therapies do-not always work out. That is the subject for another blog post.

Inbox Zero: Fastmail for academics.

Who wants this?

It is simple.

Sign up for Fastmail.

Have a custom domain, if you want. Or else, existing domains offered by Fastmail work fine.

Have an alias for each website. For example, if you order pizzas, have one for that. For a travel website, have another. The trick is NOT to give out your actual email id but give the alias for that particular site.

This is how it plays out. Go to dominos and have an alias like (or whatever domain you want). It will immediately segregate your email. If you are spammed for that domain, it is a matter of deleting that alias. Simple. Quick. Painless.

I have folders for all incoming mail, and Fastmail allows setting up rules to sort them out automatically. For example, if I have a newsletter subscription, it is set to flow in that folder and marked as read. Or anything else that I wish to read later.

Achieve that today!

Quality of life in brain tumours

This issue is very thorny one in the neuro-oncology community. How do you measure the quality of life objectively?

A RANO working group has defined that outline and is aware of it. We, as radiation oncologists, aren’t oblivious to the fact that radiation therapy offers one single shot to give the maximum chance of cure. I am not discussing the issue of re-irradiation here, but the idea is to minimise the impact of existing delivery mechanisms.

Beyond the tumour volumes (2-3 cm for high-grade gliomas), this is both empirical and observational. They observed that bulk of failures happened in the high dose region. It brings us to two important questions here.

1) If we know that it is going to happen in the 95% isodose, why don’t we focus on intentional dose heterogeneity, at the expense of conformity? We could explore mathematical formulations for it- how best to predict which dose fractionation would be best suitable for the likely outcomes, where the failure is expected to take place and escalate the dose to that region.

2) Some tumours usually fail elsewhere, outside the treatment area. If this is the case, why not “lower” the dose to the treatment area (so-called “de-escalation”)?

Do you see the immediate impact?

Lower the total dose to the normal brain!

Now, that leads us to two more questions.

1) Why don’t we lower the dose to 55+Gy for Grade III tumours, because they have a better outcome?

2) Does Temozolomide also act as a radiation sensitiser?

The problems with these very broad-based assumptions are that we do not have a robust criterion for pre-operative or even intra-operative validation of tumour subsets by use of MR spectroscopy or perfusion (or use of any other metabolites, for that matter). Likewise, after intense scrutiny and numerous workshops, we have just been able to define the glioblastomas/grade III astrocytomas along with the molecular data (or even other variants) objectively. Previously, palisading necrosis was all that we had from my pathology colleagues. Now, we are wading in molecular soup, and no one has the complete picture of how things can be nailed!

However, use of these molecular methods isn’t widespread.

One way out is to sequence the tumours completely, follow up patients standard course fractionation and prospectively identify patterns of failure.

It would be akin to a very preliminary “precision medicine” and not the hype cycle that seeks to identify the “molecular targets”.

No, we don’t need more “research” on something that is being duplicated across the labs. But we need to be able to channelise something that we have learned.

Who is going to bell the cat?

I think, currently, we are just trying to identify who the cat is.

RANO: Working plan for the use of patient-reported outcome measures in adults with brain tumours

Lancet Oncology, 19 (2018) e173-e180. doi:10.1016/S1470-2045(18)30004-4

Why is this paper important?

It is because there are no reliable means of patient-reported outcomes (PRO). These metrics are an essential part of monitoring the course of treatment as well as quantifying the impact of the same. For years, we have been relying on metrics like Mini-Mental State Examination. I have found that examination to be sorely limited because it is full of biases and highly dependent on the cognition/mood status of patients. There has to be a more robust metric.

Hence, the great blurb from this paper:

The first step would be to provide an overview of the guidelines of previous initiatives on the collection, analysis, interpretation, and reporting of PRO data

It is the step in the right direction because of it an acknowledgement of what we don’t know. I have attempted to involve formal psychometric testing, but it usually takes hours and have limited clinical utility. The existing tests have undergone validation in different “trials” (most of which are either single author led studies or institutional trials) leading to much confusion. Do we have a standard way of reporting them?

Not yet.

It leads us to the second step.

The second step would be to identify what PRO measures have been applied in brain tumour studies so far. As mentioned, several PRO measures are already used frequently (e.g., MD Anderson Symptom Inventory Brain Tumor Module, Functional Assessment of Cancer Treatment-Br, EORTC Quality of Life Questionnaire C30 and BN20, and the Barthel Index)

Content validity should also be culturally sensitive. What applies in one geography doesn’t translate in another part of the world (which adds to the complexity of the task).

Therefore, I feel that the third step is the most crucial question in patient-reported outcomes.

The third step would be to establish the content validity of the existing PRO measures identified in the second step. Are all essential aspects of functioning and health for patients with brain tumours covered by these instruments?

The next excerpt nails this in the right direction. It is not the patient defined outcomes alone but has to be validated by physician scoring system as well.

How is this going to shape up?

This framework refers to a patient’s functioning at three distinct levels. The most basic level is a patient’s impairment in body function, such as muscle weakness. Assessment of these impairments can be done with PRO measures, such as a symptom questionnaire, but also with clinician-reported outcome measures such as a neurological examination

Last but not the least is the psychometric properties-it has to prove its reliability as well! This, of course, applies to reproducibility across different domains.

The fourth step is to identify the psychometric properties of the detected PRO measures. How valid and reliable are these instruments for patients with brain tumours

To achieve this goal, the committee proposes to use COSMIN taxonomy and defines it as such:

The COSMIN taxonomy distinguishes three quality domains: reliability, validity, and responsiveness, each of which includes one or more measurement properties. Reliability refers to the degree in which the measurement is without measurement error, whereas validity refers to the degree in which an instrument truly measures the construct intended to measure. Responsiveness refers to the ability of an instrument to detect (clinically relevant) changes over time.

These criteria will help to shape up the course of treatment beyond the survival outcomes and focus on preservation of quality of life.

More on that later.

Social Media: Falsehoods

I was alarmed to read about falsehoods about health spreading through WhatsApp. It is a Facebook-owned application which has millions of users worldwide. It is impossible to get the actual numbers but suffice to say that it is prevalent in emerging economies.

The alarm went off with an excellent article from The Wired which has chronicled the rise in Yellow Fever epidemic in Brazil and the falsehoods surrounding the vaccination. I reproduce some essential bits here.

In recent weeks, rumours of fatal vaccine reactions, mercury preservatives, and government conspiracies have surfaced with alarming speed on the Facebook-owned encrypted messaging service, which is used by 120 million of Brazil’s roughly 200 million residents. The platform has long incubated and proliferated fake news, in Brazil in particular.

The phenomenon of fake news isn’t peculiar to Brazil, but these spread rapidly through the social networks.

“These videos are very sophisticated, with good editing, testimonials from experts, and personal experiences,” Sacramento says. It’s the same journalistic format people see on TV, so it bears the shape of truth. And when people share these videos or news stories within their social networks as personal messages, it changes the calculus of trust.

If you wish to have a scientific basis to why this happens, Science published a great resource.

We classified news as true or false using information from six independent fact-checking organisations that exhibited 95 to 98% agreement on the classifications. Falsehood diffused significantly farther, faster, deeper, and more broadly than the truth in all categories of information, and the effects were more pronounced for false political news than for false news about terrorism, natural disasters, science, urban legends, or financial information. We found that false news was more novel than true news, which suggests that people were more likely to share novel information.

This is an example of a rumour cascade:

The purpose of this post is that physicians should step up their game and have an active social media presence. A lot of sane voices will go a long way to dispel myths and fears about public health initiatives.

That is the reason why I set up Telegram channel to have physician vetted information and a one-stop solution for brain tumour affected patients. We owe people more!